A102696 Number of positive even integers that can be written as the sum of 2 of the first n odd primes (not necessarily distinct).
1, 3, 5, 8, 11, 14, 17, 20, 23, 28, 32, 37, 40, 44, 47, 50, 57, 61, 66, 70, 73, 78, 83, 89, 94, 99, 103, 107, 110, 117, 122, 127, 134, 139, 144, 150, 154, 160, 165, 170, 177, 181, 187, 192, 196, 202, 207, 215, 220, 227, 231, 236, 242, 247, 250, 253, 261, 269, 274, 278
Offset: 1
Examples
a(3) = 5 because with the primes {3, 5, 7} one can write 6 = 3+3, 8 = 3+5, 10 = 5+5, 12 = 5+7 and 14 = 7+7, for a total of 5 even numbers. a(3) = 5 because with the primes {3, 5, 7} one can write 6 = 3+3, 8 = 3+5, 10 = 5+5 & 3+7, 12 = 5+7 and 14 = 7+7, for a total of 5 even numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A105047 (first differences).
Programs
-
Haskell
import Data.List (nub) a102696 n = length $ nub [p + q | p <- take n a065091_list, q <- takeWhile (<= p) a065091_list] -- Reinhard Zumkeller, Aug 11 2015
-
Maple
N:= 1000: # to get first N terms Primes:= {seq(ithprime(i),i=2..N+1)}: S:= {}: for n from 1 to N do S:= S union map(`+`,Primes[1..n],Primes[n]); A[n]:= nops(S); od: seq(A[n],n=1..N); # Robert Israel, Sep 03 2014
-
Mathematica
f[n_] := Block[{tp = Table[ Prime[i], {i, 2, n + 1}]}, Length[ Union[ Flatten[ Table[tp[[i]] + tp[[j]], {i, n}, {j, i}]] ]]]; Table[ f[n], {n, 60}] (* Robert G. Wilson v, Feb 05 2005 *)
-
PARI
a(n)=my(P=prime(n+1),s); forstep(k=6,2*P,2, forprime(p=max(k-P,3), min(P,k/2), if(isprime(k-p), s++; break))); s \\ Charles R Greathouse IV, Sep 04 2014
-
PARI
list(n)=my(P=prime(n+1),u=vectorsmall(P),v=vector(n),k); forprime(p=3,P, forprime(q=3,p,u[(p+q)/2]=1); v[k++]=sum(i=1,p,u[i])); v \\ Charles R Greathouse IV, Sep 04 2014
Extensions
More terms from Robert G. Wilson v, Feb 05 2005
Comments