A102723 Smallest prime a(n) such that a(n)-x and a(n)+x, for x=1 to n, are all composite.
5, 23, 23, 53, 53, 211, 211, 211, 211, 211, 211, 1847, 1847, 2179, 2179, 2179, 2179, 3967, 3967, 16033, 16033, 16033, 16033, 24281, 24281, 24281, 24281, 24281, 24281, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 58831
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..479 (first 97 terms from Harvey P. Dale)
- W. Sierpiński, Remarque sur la répartition des nombres premiers, Colloq. Math., 1 (1948), 193-194.
Programs
-
Mathematica
f[n_] := Block[{k = 1}, While[ Union[ PrimeQ /@ Sort[ Flatten[ Table[{Prime[k] - i, Prime[k] + i}, {i, n}]]]] != {False}, k++ ]; Prime[k]]; Table[ f[n], {n, 40}] (* Robert G. Wilson v, Feb 22 2005 *) cmpgap[n_]:=Module[{p=Prime[n]},Min[p-NextPrime[p,-1],NextPrime[p]-p]]; Module[{nn=10000,prs},prs=Table[{Prime[n],cmpgap[n]},{n,nn}];Table[ SelectFirst[ prs,#[[2]]>=k&],{k,2,50}]][[All,1]] (* Harvey P. Dale, Oct 15 2021 *)
Extensions
a(12)-a(40) from Robert G. Wilson v, Feb 22 2005
Comments