cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102765 Array read by antidiagonals: T(n, k) = ((n+4)^k-(n-1)^k)/5.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 5, 13, 0, 1, 7, 25, 51, 0, 1, 9, 43, 125, 205, 0, 1, 11, 67, 259, 625, 819, 0, 1, 13, 97, 477, 1555, 3125, 3277, 0, 1, 15, 133, 803, 3355, 9331, 15625, 13107, 0, 1, 17, 175, 1261, 6505, 23517, 55987, 78125, 52429, 0, 1, 19, 223, 1875, 11605
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 10 2005

Keywords

Comments

Consider a 5x5 matrix M =
[n, 1, 1, 1, 1]
[1, n, 1, 1, 1]
[1, 1, n, 1, 1]
[1, 1, 1, n, 1]
[1, 1, 1, 1, n].
The n-th row of the array contains the values of the non diagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = non diagonal entry + (n-1)^k.)
For row r we have polynomial ((r+4)^n-(r-1)^n)/5. Corresponding g.f.s: x/((1-(r-1)x)(1-(r+4)x))
If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+4.
Triangle T(n, k) = (4^(n-k-1)-(-1)^(n-k-1))/5*(binomial(k+(n-k-1),n-k-1)) gives coefficients for polynomials for the columns of the array. First four polynomial are:
1
3 + 2*k
13 + 9*k + 3*k^2
51 + 52*k + 18*k^2 + 4*k^3
...

Examples

			Array begins:
  0, 1,  3, 13,  51,  205, ...
  0, 1,  5, 25, 125,  625, ...
  0, 1,  7, 43, 259, 1555, ...
  0, 1,  9, 67, 477, 3355, ...
  0, 1, 11, 97, 803, 6505, ...
  ...
		

Crossrefs

Cf. A015521 (for n=0), A000351 (for n=1), A003464 (for n=2), A016130 (for n=3), A016140 (for n=4), A016153 (for n=5), A016164 (for n=6), A016174 (for n=7), A016184 (for n=8), A015441 (for n=-1), A091005 (for n=-2).

Programs

  • PARI
    MM(n,N)=local(M);M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M
    for(k=0,10, for(i=0,10,print1((MM(5,k)^i)[1,2],","));print())
    
  • PARI
    p(n,k)=((n+4)^k-(n-1)^k)/5
    for(k=0,10, for(i=0,10,print1(p(k,i),","));print())
    
  • PARI
    for(k=0,10, for(i=0,10,print1(polcoeff(x/((1-(k-1)*x)*(1-(k+4)*x)),i),","));print())