A102834 Numbers whose factors are primes raised to powers >= 2 and are not perfect squares.
8, 27, 32, 72, 108, 125, 128, 200, 216, 243, 288, 343, 392, 432, 500, 512, 648, 675, 800, 864, 968, 972, 1000, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1728, 1800, 1944, 2000, 2048, 2187, 2197, 2312, 2592, 2700, 2744, 2888, 3087, 3125, 3200, 3267, 3375
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Powerful[n_Integer] := (n==1) || Min[Transpose[FactorInteger[n]][[2]]]>1; Select[Range[10000], Powerful[ # ] && !IntegerQ[Sqrt[ # ]]&] (* T. D. Noe, May 03 2006 *)
-
PARI
omnipnotsq(n,m)= local(a,x,j,fl=0); for(x=1,n, a=factor(x); for(j=1,omega(x), if(a[j,2]>= m,fl=1,fl=0;break); ); if(fl&issquare(x)==0,print1(x",")) )
-
PARI
is(n)=ispowerful(n) && !issquare(n) \\ Charles R Greathouse IV, Oct 19 2015
-
Python
from math import isqrt from sympy import integer_nthroot, mobius def A102834(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): j = isqrt(x) c, l = n+x+j, 0 while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) c -= squarefreepi(integer_nthroot(x,3)[0])-l return c return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024
Formula
Sum_{n>=1} 1/a(n)^s = zeta(2*s)*(zeta(3*s)/zeta(6*s) - 1), s > 1/2. - Amiram Eldar, Apr 06 2023
Comments