cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102834 Numbers whose factors are primes raised to powers >= 2 and are not perfect squares.

Original entry on oeis.org

8, 27, 32, 72, 108, 125, 128, 200, 216, 243, 288, 343, 392, 432, 500, 512, 648, 675, 800, 864, 968, 972, 1000, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1728, 1800, 1944, 2000, 2048, 2187, 2197, 2312, 2592, 2700, 2744, 2888, 3087, 3125, 3200, 3267, 3375
Offset: 1

Views

Author

Cino Hilliard, Feb 27 2005

Keywords

Comments

Powerful numbers (A001694) that are not perfect squares. - T. D. Noe, May 03 2006

Crossrefs

Programs

  • Mathematica
    Powerful[n_Integer] := (n==1) || Min[Transpose[FactorInteger[n]][[2]]]>1; Select[Range[10000], Powerful[ # ] && !IntegerQ[Sqrt[ # ]]&] (* T. D. Noe, May 03 2006 *)
  • PARI
    omnipnotsq(n,m)= local(a,x,j,fl=0); for(x=1,n, a=factor(x); for(j=1,omega(x), if(a[j,2]>= m,fl=1,fl=0;break); ); if(fl&issquare(x)==0,print1(x",")) )
    
  • PARI
    is(n)=ispowerful(n) && !issquare(n) \\ Charles R Greathouse IV, Oct 19 2015
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius
    def A102834(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j = isqrt(x)
            c, l = n+x+j, 0
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n)^s = zeta(2*s)*(zeta(3*s)/zeta(6*s) - 1), s > 1/2. - Amiram Eldar, Apr 06 2023