A102838 Composite numbers whose exponents in their canonical factorization lie in the geometric progression 1, 3, 9, ...
54, 250, 375, 686, 1029, 1715, 2662, 3993, 4394, 6591, 6655, 9317, 9826, 10985, 13718, 14739, 15379, 20577, 24167, 24334, 24565, 34295, 34391, 36501, 48013, 48778, 54043, 59582, 60835, 63869, 73167, 75449, 85169, 89167, 89373
Offset: 1
Examples
The first term having more than 2 prime powers is 105468750 = 2^1 * 3^3 * 5^9, not shown.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3000
Crossrefs
Cf. A102836.
Programs
-
Mathematica
q[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, Length[e] > 1 && e == 3^Range[0, Length[e]-1]]; Select[Range[10^5], q] (* Amiram Eldar, Jun 29 2024 *)
-
PARI
geoprog(n,m) = { local(a,x,j,nf,fl=0); for(x=1,n, a=factor(x); nf=omega(x); for(j=1,nf, if(a[j,2]==3^(j-1),fl=1,fl=0;break); ); if(fl&nf>1,print1(x",")) ) }
-
PARI
is(n) = if(n == 1 || isprime(n), 0, my(e = factor(n)[, 2]); for(i = 1, #e, if(e[i] != 3^(i-1), return(0))); 1); \\ Amiram Eldar, Jun 29 2024