cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102838 Composite numbers whose exponents in their canonical factorization lie in the geometric progression 1, 3, 9, ...

Original entry on oeis.org

54, 250, 375, 686, 1029, 1715, 2662, 3993, 4394, 6591, 6655, 9317, 9826, 10985, 13718, 14739, 15379, 20577, 24167, 24334, 24565, 34295, 34391, 36501, 48013, 48778, 54043, 59582, 60835, 63869, 73167, 75449, 85169, 89167, 89373
Offset: 1

Views

Author

Cino Hilliard, Feb 27 2005

Keywords

Examples

			The first term having more than 2 prime powers is 105468750 = 2^1 * 3^3 * 5^9, not shown.
		

Crossrefs

Cf. A102836.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, Length[e] > 1 && e == 3^Range[0, Length[e]-1]]; Select[Range[10^5], q] (* Amiram Eldar, Jun 29 2024 *)
  • PARI
    geoprog(n,m) = { local(a,x,j,nf,fl=0); for(x=1,n, a=factor(x); nf=omega(x); for(j=1,nf, if(a[j,2]==3^(j-1),fl=1,fl=0;break); ); if(fl&nf>1,print1(x",")) ) }
    
  • PARI
    is(n) = if(n == 1 || isprime(n), 0, my(e = factor(n)[, 2]); for(i = 1, #e, if(e[i] != 3^(i-1), return(0))); 1); \\ Amiram Eldar, Jun 29 2024