A102880 A Chebyshev transform of the first kind of the Catalan numbers.
1, 1, 0, 2, 8, 22, 64, 198, 624, 1994, 6464, 21210, 70296, 234990, 791424, 2682894, 9147360, 31347730, 107919232, 373055730, 1294372008, 4506163718, 15735793088, 55105084246, 193471595344, 680891484762, 2401575077568, 8487950090954
Offset: 0
Formula
G.f.: ((1-x^2)/(1+x^2))c(x/(1+x^2)), c(x) the g.f. of the Catalan numbers A000108; a(n)=n*sum{k=0..floor(n/2), C(n-k, k)(-1)^k*C(n-2k)/(n-k)}.
Conjecture: (n+1)*(n-3)*a(n) -2*(2*n-1)*(n-3)*a(n-1) +2*(1-4*n+n^2)*a(n-2) -2*(n-1)*(2*n-7)*a(n-3) +(n-1)*(n-5)*a(n-4)=0. - R. J. Mathar, Nov 09 2012
Comments