cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102879 A Chebyshev transform of the first kind of the central binomial numbers.

Original entry on oeis.org

1, 2, 4, 14, 48, 162, 556, 1934, 6784, 23954, 85044, 303294, 1085712, 3898962, 14040156, 50678814, 183309312, 664263714, 2411050084, 8764098158, 31899231088, 116244082178, 424064770188, 1548543412398, 5659898710912
Offset: 0

Views

Author

Paul Barry, Jan 15 2005

Keywords

Comments

Image of 1/sqrt(1-4x) under the mapping g(x)->((1-x^2)/(1+x^2))*g(x/(1+x^2)).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x^2)/Sqrt(1-4*x+2*x^2-4*x^3+x^4) )); // G. C. Greubel, Mar 31 2019
    
  • Maple
    f:= gfun:-rectoproc({n*(n-3)*a(n) -2*(2*n-1)*(n-3)*a(n-1) +2*(2-4*n+n^2)*a(n-2) -2*(n-1)*(2*n-7)*a(n-3) +(n-1)*(n-4)*a(n-4),a(0)=1,a(1)=2,a(2)=4,a(3)=14},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Aug 28 2018
  • Mathematica
    CoefficientList[Series[(1-x^2)/Sqrt[1-4*x+2*x^2-4*x^3+x^4], {x,0,30}],x] (* G. C. Greubel, Mar 31 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x^2)/sqrt(1-4*x+2*x^2-4*x^3+x^4)) \\ G. C. Greubel, Mar 31 2019
    
  • Sage
    ((1-x^2)/sqrt(1-4*x+2*x^2-4*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 31 2019

Formula

G.f.: (1-x^2)/sqrt(1-4*x+2*x^2-4*x^3+x^4).
a(n) = n*Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*C(2(n-2k), n-2k)/(n-k).
Conjecture: n*(n-3)*a(n) - 2*(2*n-1)*(n-3)*a(n-1) + 2*(2-4*n+n^2)*a(n-2) - 2*(n-1)*(2*n-7)*a(n-3) + (n-1)*(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 09 2012
Conjecture verified using the differential equation x*(x^2+1)*(x^2-4*x+1)*g'' + (4*x^4-10*x^3+2*x^2+2*x-2)*g' + 4*(x^2-x+1)*g = 0 satisfied by the g.f. - Robert Israel, Aug 28 2018
a(n) ~ 3^(1/4) * (2 + sqrt(3))^n / sqrt(2*Pi*n). - Vaclav Kotesovec, Nov 02 2023
Showing 1-1 of 1 results.