cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102881 Expansion of (1+x)/sqrt(1-4x^2-8x^3-4x^4).

Original entry on oeis.org

1, 1, 2, 6, 12, 32, 80, 200, 520, 1336, 3472, 9072, 23744, 62432, 164544, 434688, 1150944, 3052768, 8110784, 21581120, 57498496, 153378048, 409583616, 1094848768, 2929288960, 7843943680, 21020501504, 56371941888, 151276652544
Offset: 0

Views

Author

Paul Barry, Jan 15 2005

Keywords

Comments

Binomial transform is A101500. Binomial transform of A102882.
Apparently the number of grand Motzkin paths of length n that avoid FF (double flat steps). - David Scambler, Jul 04 2013

Programs

  • Mathematica
    CoefficientList[Series[(1+x)/Sqrt[1-4*x^2-8*x^3-4*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

G.f.: (1+x)/sqrt((1-2x-2x^2)(1+2x+2x^2)).
D-finite with recurrence: n*a(n) +(n-2)*a(n-1) +4*(-n+1)*a(n-2) +12*(-n+2)*a(n-3) +12*(-n+3)*a(n-4) +4*(-n+4)*a(n-5)=0. - R. J. Mathar, Nov 16 2012
D-finite with recurrence (of order 4): (n-1)*n*a(n) = 4*(n-1)^2*a(n-2) + 4*(n-2)*(2*n-1)*a(n-3) + 4*(n-3)*n*a(n-4). - Vaclav Kotesovec, Feb 08 2014
a(n) ~ sqrt(54+30*sqrt(3)) * (1+sqrt(3))^n / (12 * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 08 2014