cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A199530 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum and no two consecutive zero elements.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 18, 12, 1, 8, 36, 72, 32, 1, 10, 60, 212, 320, 80, 1, 12, 90, 464, 1324, 1414, 200, 1, 14, 126, 860, 3734, 8342, 6346, 520, 1, 16, 168, 1432, 8470, 30484, 53302, 28766, 1336, 1, 18, 216, 2212, 16682, 84852, 252154, 343710, 131246, 3472, 1, 20, 270
Offset: 1

Views

Author

R. H. Hardin Nov 07 2011

Keywords

Comments

Table starts
....1......1........1.........1.........1..........1...........1...........1
....2......4........6.........8........10.........12..........14..........16
....6.....18.......36........60........90........126.........168.........216
...12.....72......212.......464.......860.......1432........2212........3232
...32....320.....1324......3734......8470......16682.......29750.......49284
...80...1414.....8342.....30484.....84852.....197962......407946......766664
..200...6346....53302....252154....860854....2378412.....5662636....12071420
..520..28766...343710...2105064...8815392...28844590....79345982...191873280
.1336.131246..2232322..17701326..90927530..352355640..1119873360..3071898666
.3472.602390.14582218.149708146.943302430.4329146404.15897133212.49465959068

Examples

			Some solutions for n=6 k=5
..1...-1....0...-4...-1....4....1...-5....1....2...-1....1....3....3....1....5
..0...-1...-1...-3....0....5...-3....0....1...-3...-3...-4....2...-5....1....2
.-4....5....3...-1...-2...-3....5....1...-1....5....0....2...-3....4...-4...-5
..3...-2...-3....2....2...-4...-1....2...-4....4...-2....2....2...-5....5...-1
..1...-3...-2....4...-4...-4....0....5....2...-5....5....4...-4....0...-2....1
.-1....2....3....2....5....2...-2...-3....1...-3....1...-5....0....3...-1...-2
		

Crossrefs

Column 1 is A102881
Row 3 is A028896

Formula

Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k
T(3,k) = 3*k^2 + 3*k
T(4,k) = (16/3)*k^3 + 8*k^2 - (4/3)*k
T(5,k) = (115/12)*k^4 + (115/6)*k^3 + (41/12)*k^2 - (1/6)*k
T(6,k) = (88/5)*k^5 + 44*k^4 + (58/3)*k^3 - 3*k^2 + (31/15)*k
T(7,k) = (5887/180)*k^6 + (5887/60)*k^5 + (620/9)*k^4 + (11/12)*k^3 + (433/180)*k^2 - (91/30)*k

A102882 Expansion of (1+2x)/sqrt((1-3x^2)(1+4x+5x^2)).

Original entry on oeis.org

1, 0, 1, 2, -3, 16, -27, 66, -79, 96, 129, -686, 2429, -5520, 11125, -15438, 10785, 36032, -182591, 556194, -1279171, 2393296, -3187131, 1157666, 10934481, -48082656, 136730689, -304493326, 539172285, -647406800, -53647147, 3352290450, -12929496767, 34720868736, -74092036479
Offset: 0

Views

Author

Paul Barry, Jan 15 2005

Keywords

Comments

Binomial transform is A102881.

Programs

  • Mathematica
    CoefficientList[Series[(1+2*x)/Sqrt[1+4*x+2*x^2-12*x^3-15*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)

Formula

G.f.: (1+2x)/sqrt(1+4x+2x^2-12x^3-15x^4).
Conjecture: n*(n+1)*a(n) +2*(2*n+3)*(n-1)*a(n-1) +2*(n^2-7)*a(n-2) +6*(5+n-2*n^2)*a(n-3) -15*(n+2)*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 09 2012
Lim sup n->infinity |a(n)|^(1/n) = sqrt(5). - Vaclav Kotesovec, Feb 03 2014
Showing 1-2 of 2 results.