A102892 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges in which the number of edges from the root to the first branch point is k.
1, 0, 1, 1, 0, 2, 5, 3, 0, 4, 25, 16, 6, 0, 8, 130, 83, 32, 12, 0, 16, 700, 442, 166, 64, 24, 0, 32, 3876, 2420, 884, 332, 128, 48, 0, 64, 21945, 13566, 4840, 1768, 664, 256, 96, 0, 128, 126500, 77539, 27132, 9680, 3536, 1328, 512, 192, 0, 256
Offset: 0
Examples
T(2,0)=1 because we have /\ and T(2,2)=2 because we have /_ and _\. Triangle starts: 1; 0, 1; 1, 0, 2; 5, 3, 0, 4; 25, 16, 6, 0, 8; 130, 83, 32, 12, 0, 16; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
Programs
-
Maple
T:=proc(n,k) if n=0 and k=0 then 1 elif k=0 then 5*binomial(3*n-1,n-2)/(3*n-1) elif k
-
Mathematica
T[n_, k_] := Which[n == 0 && k == 0, 1, k == 0, 5*Binomial[3n - 1, n - 2]/(3n - 1), k
Jean-François Alcover, Jul 06 2018, from Maple *) -
PARI
T(n, k) = {if(k==0, if(n==0, 1, 5*binomial(3*n-1, n-2)/(3*n-1)), if(n<=k, if(n==k, 2^(n-1), 0), 2^(k-1)*binomial(3*n-3*k+1, n-k)/(n-k+1) - 2^k*binomial(3*n-3*k-2, n-k-1)/(n-k)))} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 06 2017
Formula
T(n, 0) = 5*binomial(3n-1, n-2)/(3n-1) for n > 0.
T(n, k) = [2^(k-1)/(n-k+1)]binomial(3n-3k+1, n-k)-[2^k/(n-k)]binomial(3n-3k-2, n-k-1) for 0 < k < n.
T(n, n) = 2^(n-1) (n > 0).
G.f.: (1/2)*g(2-g) + g^2*(1-2*z)/(2*(1-2*t*z)), where g = 1 + z*g^3 is the g.f. of the ternary numbers (A001764).
Comments