A102893 Number of noncrossing trees with n edges and having degree of the root at least 2.
1, 0, 1, 5, 25, 130, 700, 3876, 21945, 126500, 740025, 4382625, 26225628, 158331880, 963250600, 5899491640, 36345082425, 225082957512, 1400431689475, 8749779798375, 54874635255825, 345329274848250, 2179969531405680
Offset: 0
Examples
a(2)=1 because among the noncrossing trees with 2 edges, namely /_, _\ and /\, only the last one has root degree >1.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- David Bevan, Robert Brignall, Andrew Elvey Price and Jay Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, arXiv preprint arXiv:1711.10325 [math.CO], 2017-2019.
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
Programs
-
Maple
a:=proc(n) if n=0 then 1 else 5*binomial(3*n-1,n-2)/(3*n-1) fi end: seq(a(n), n=0..25); # Recurrence: a := proc(n) option remember; if n < 3 then return [1,0,1][n+1] fi; (27*n^3 - 81*n^2 + 78*n - 24)*a(n - 1)/(4*n^3 - 6*n^2 - 4*n) end: seq(a(n), n=0..23); # Peter Luschny, Aug 08 2020 alias(PS=ListTools:-PartialSums): A102893List := proc(m) local A, P, n; A := [1,0]; P := [1]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]])); A := [op(A), P[-2]] od; A end: A102893List(23); # Peter Luschny, Mar 26 2022
-
Mathematica
a[0] = 1; a[n_] := 5*Binomial[3n-1, n-2]/(3n-1); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Mar 01 2018 *)
-
PARI
a(n) = if(n<=1, n==0, 5*binomial(3*n-1, n-2)/(3*n-1)); \\ Andrew Howroyd, Nov 17 2017
Formula
a(0)=1; a(n) = 5*binomial(3n-1, n-2)/(3n-1) if n > 0.
G.f.: g - z*g^2, where g = 1 + z*g^3 is the g.f. of the ternary numbers (A001764).
D-finite with recurrence 2*n*(2*n+1)*(n-2)*a(n) -3*(n-1)*(3*n-4)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Feb 16 2018
a(n) ~ (5*3^(3*n + 1/2))/(36*4^n*n^(3/2)*sqrt(Pi)). - Peter Luschny, Aug 08 2020
Comments