A102913 Take characteristic function of the semiprimes A001358, interpret it as a binary fraction and convert to a decimal fraction.
0, 4, 0, 5, 7, 3, 5, 0, 0, 2, 0, 1, 3, 9, 8, 0, 6, 8, 6, 7, 4, 3, 1, 1, 2, 6, 6, 4, 2, 3, 5, 3, 5, 7, 5, 0, 6, 9, 3, 6, 2, 7, 5, 8, 2, 1, 9, 4, 0, 0, 2, 3, 5, 8, 6, 0, 8, 3, 3, 4, 0, 6, 9, 4, 6, 3, 3, 3, 6, 2, 5, 2, 4, 7, 3, 5, 1, 3, 5, 1, 3, 9, 1, 0, 5, 4, 4, 2, 5, 2, 5, 8, 2, 3, 8, 0, 5, 8, 6, 4, 3, 3, 4, 5, 2
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Prime Constant.
- Eric Weisstein's World of Mathematics, Semiprime.
- Eric Weisstein et al., Characteristic Function.
Crossrefs
Programs
-
Mathematica
Semiprime[n_] := If[Plus @@ Last[ Transpose[ FactorInteger[n]]] == 2, 1, 0]; RealDigits[ FromDigits[{Table[ Semiprime[n], {n, 2, 350}], -2}, 2], 10, 111][[1]] (* Ed Pegg Jr *)
Formula
The characteristic function of the semiprimes is the function f(n) = 1 iff n is semiprime, 0 otherwise. This begins, for n = 0, 1, 2, 3, ... f(n) = 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1... If we concatenate these bits and interpret them as the binary fraction 0.0000101001100011000001... (base 2) we have, expressed as a decimal fraction, 0.0405735002013980686743112664235357506936275821940023586083340694633362...
The characteristic function of A001358 is A064911 (for n >= 1, starting with 0, 0, 0, 1 ...). The binary constant here has an additional 0 after the binary point. - Georg Fischer, Aug 04 2021
Extensions
More terms from Robert G. Wilson v, Jan 24 2005