cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103138 Second column of inverse of Delannoy triangle.

Original entry on oeis.org

0, 1, -3, 10, -38, 158, -698, 3218, -15310, 74614, -370610, 1869338, -9549174, 49302030, -256859754, 1348695330, -7129819038, 37916710374, -202708895330, 1088819681834, -5873129780422, 31800514324606, -172780691083034, 941714095635890, -5147414826440558, 28210011946820438
Offset: 0

Views

Author

Paul Barry, Jan 24 2005

Keywords

Comments

The positive sequence has g.f. (1+x*S(x))*x*S(x).
Second column of A103136.

Examples

			G.f.: A(x) = x - 3*x^2 + 10*x^3 - 38*x^4 + 158*x^5 - 698*x^6 + ... where A( x*(1+x)/(1-x) ) / (1-x) = x.
		

Programs

  • Mathematica
    CoefficientList[Series[(1-x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x))*x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    {a(n)=if(n==1, 1, -polcoeff(sum(k=1, n-1, a(k)*x^k*(1+x)^k/(1-x+x*O(x^n))^(k+1)), n))} \\ Paul D. Hanna, Aug 06 2013

Formula

G.f.: (1-x*S(-x))*x*S(-x), where S(x) is the g.f. of the large Schroeder numbers A006318.
Conjecture: 2*n*a(n) +(13*n-20)*a(n-1) +(8*n-27)*a(n-2) +(n-5)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
G.f.: x = Sum_{n>=1} a(n) * x^n * (1+x)^n / (1-x)^(n+1). - Paul D. Hanna, Aug 06 2013
G.f. satisfies: A(x*(1+x)/(1-x)) = x - x^2. - Paul D. Hanna, Aug 06 2013
a(n) ~ (-1)^n * (1-2*sqrt(2)) * sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^n / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2014