cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A293691 Numbers z such that x^2 + y^6 = z^2 (with positive integers x and y) and gcd(x, y, z) = 1.

Original entry on oeis.org

17, 365, 745, 1025, 1753, 7813, 8177, 11665, 15641, 16649, 27289, 58825, 59189, 65537, 66265, 66637, 81161, 117665, 118673, 129313, 183185, 250001, 250729, 265721, 273533, 324545, 367649, 531457, 532465, 596977, 746497, 762121, 781441, 864145, 885781, 886145
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Subsequence of A293690.

Examples

			15^2 + 2^6 = 17^2 and gcd(15, 2, 17) = 1, 17 is a term.
885416^2 + 33^6 = 886145^2 and gcd(885416, 33, 886145) = 1, 886145 is a term.
		

Crossrefs

Programs

  • Mathematica
    z={};Do[If[IntegerQ[(n^2 - y^6)^(1/2)] && GCD[y,n]==1,AppendTo[z,n]],{n,8.9*10^5},{y,(n^2 - 1)^(1/6)}];z

A293693 Numbers z such that x^2 + y^7 = z^2 (with positive integers x and y) and gcd(x, y, z) = 1.

Original entry on oeis.org

33, 1094, 2219, 4097, 6283, 39063, 40156, 69985, 78157, 82221, 148109, 411772, 412865, 450834, 524289, 526475, 602413, 823575, 827639, 893527, 1347831, 2391485, 2430547, 2500001, 2502187, 2803256, 3323543, 4783001, 4787065, 5307257, 7282969, 8957953, 9036077
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Subsequence of A293692.

Examples

			31^2 + 2^7 = 33^2 and gcd(31, 2, 33) = 1, 33 is a term.
8879827^2 + 60^7 = 9036077^2 and gcd(8879827, 60, 9036077) = 1, 9036077 is a term.
		

Crossrefs

Programs

  • Mathematica
    z={};Do[If[IntegerQ[(n^2 - y^7)^(1/2)] && GCD[y,n]==1,AppendTo[z,n]],{n,9.7*10^6},{y,(n^2 - 1)^(1/7)}];z
Showing 1-2 of 2 results.