cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103160 a(n) = GCD(reverse(n!), reverse((n+1)!)).

Original entry on oeis.org

1, 2, 6, 21, 3, 27, 9, 9, 88263, 9, 99, 594, 198, 99, 99, 99, 99, 99, 99, 9009, 99, 99, 198, 99, 99, 297, 1089, 99, 198, 198, 594, 198, 396, 693, 99, 99, 99, 297, 594, 99, 99, 99, 198, 99, 99, 99, 99, 99, 99, 99, 99, 396, 2772, 99, 99, 99, 396, 693, 693, 99, 99, 99, 99
Offset: 1

Views

Author

Labos Elemer, Jan 25 2005

Keywords

Comments

Through the first 200 terms, the largest term has 6 digits with the exception of a(99) which has 134 digits. - Harvey P. Dale, Dec 24 2018

Examples

			Outstandingly high values arise at n = 10^k - 1 because
A004153(n) = A004153(n+1), a(n) = rev(n!), n! written backwards.
See n = 9, 99, 999, etc.
		

Crossrefs

Programs

  • Mathematica
    rd[x_] :=FromDigits[Reverse[IntegerDigits[x]]] Table[GCD[rd[w! ], rd[(w+1)! ]], {w, 1, 100}]
    GCD@@#&/@Partition[IntegerReverse[Range[100]!],2,1] (* Harvey P. Dale, Dec 24 2018 *)
  • Python
    from math import factorial, gcd
    def a(n):
        f = factorial(n)
        return gcd(int(str(f)[::-1]), int(str(f*(n+1))[::-1]))
    print([a(n) for n in range(1, 64)]) # Michael S. Branicky, Dec 12 2021

Formula

a(n) = GCD(A004153((n+1)!), A004153(n!)).