A103167 a(n) = 2^n mod reverse(2^n).
0, 0, 0, 16, 9, 18, 128, 256, 82, 1024, 2048, 4096, 2356, 16384, 32768, 1980, 131072, 262144, 524288, 1048576, 2097152, 159390, 319770, 16777216, 10108899, 20228688, 134217728, 268435456, 98713642, 1073741824, 2147483648, 4294967296, 2681134876, 17179869184
Offset: 1
Examples
a(5) = 2^5 mod reverse(2^5) = 32 mod reverse(32) = 32 mod 23 = 9.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Mod[FromDigits[Reverse[IntegerDigits[2^n]]], 2^n], {n, 1, 256}] Table[PowerMod[2,n,IntegerReverse[2^n]],{n,40}] (* Harvey P. Dale, Jan 30 2022 *)
-
Python
def a(n): t = 2**n; return t%int(str(t)[::-1]) print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Dec 12 2021
Comments