A103217 Hexagonal numbers triangle read by rows: T(n,k)=(n+1-k)*(2*(n+1-k)-1).
1, 6, 1, 15, 6, 1, 28, 15, 6, 1, 45, 28, 15, 6, 1, 66, 45, 28, 15, 6, 1, 91, 66, 45, 28, 15, 6, 1, 120, 91, 66, 45, 28, 15, 6, 1, 153, 120, 91, 66, 45, 28, 15, 6, 1, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 231, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 276, 231, 190, 153, 120, 91, 66
Offset: 0
Examples
Triangle begins: 1, 6,1, 15,6,1, 28,15,6,1, 45,28,15,6,1, 66,45,28,15,6,1, 91,66,45,28,15,6,1,
Links
- Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Hexagonal Number.
- Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number.
Programs
-
Mathematica
T[n_, k_] := (n + 1 - k)*(2*(n + 1 - k) - 1); Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)
-
PARI
T(n, k) = (n+1-k)*(2*(n+1-k)-1); for(i=0,10, for(j=0,i,print1(T(i,j),",")); print())
Comments