cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103222 Real part of the totient function phi(n) for Gaussian integers. See A103223 for the imaginary part and A103224 for the norm.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 4, 6, 0, 10, 4, 8, 6, 4, 8, 12, 6, 18, 0, 12, 10, 22, 8, 10, 4, 18, 12, 22, 0, 30, 16, 20, 8, 12, 12, 30, 18, 16, 0, 32, 12, 42, 20, 12, 22, 46, 16, 42, 0, 24, 8, 44, 18, 20, 24, 36, 16, 58, 0, 50, 30, 36, 32, 8, 20, 66, 16, 44, 0, 70, 24, 62, 24, 20, 36, 60, 8, 78, 0
Offset: 1

Views

Author

T. D. Noe, Jan 26 2005

Keywords

Comments

This definition of the totient function for Gaussian integers preserves many of the properties of the usual totient function: (1) it is multiplicative: if gcd(z1,z2)=1, then phi(z1*z2)=phi(z1)*phi(z2), (2) phi(z^2)=z*phi(z), (3) z=Sum_{d|z} phi(d) for properly selected divisors d and (4) the congruence z=1 (mod phi(z)) appears to be true only for Gaussian primes. The first negative term occurs for n=130=2*5*13, the product of the first three primes which are not Gaussian primes.

Crossrefs

Programs

  • Mathematica
    phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Re[Table[phi[n], {n, 100}]]

Formula

Let a nonzero Gaussian integer z have the factorization u p1^e1...pn^en, where u is a unit (1, i, -1, -i), the pk are Gaussian primes in the first quadrant and the ek positive integers. Then we define phi(z) = u*product_{k=1..n} (pk-1) pk^(ek-1).