A103237 Triangular matrix T, read by rows, that satisfies: T^3 + 3T^2 + 3T = SHIFTUP(T), also T^(n+2) + 3T^(n+1) + 3T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
1, 7, 2, 133, 26, 3, 5362, 962, 63, 4, 380093, 66794, 3843, 124, 5, 42258384, 7380100, 409248, 11284, 215, 6, 6830081860, 1190206134, 65160081, 1709836, 27305, 342, 7, 1520132414241, 264665899160, 14416260516, 371199704, 5585270, 57798, 511, 8
Offset: 0
Examples
Rows of T begin: [1], [7,2], [133,26,3], [5362,962,63,4], [380093,66794,3843,124,5], [42258384,7380100,409248,11284,215,6], [6830081860,1190206134,65160081,1709836,27305,342,7],... Rows of T^2 begin: [1], [21,4], [714,130,9], [41923,7410,441,16],... Rows of T^3 begin: [1], [49,8], [2821,494,27], [238238,41678,2331,64],... Rows of T^3 + 3*T^2 + 3*T equals SHIFTUP(T): [7], [133,26], [5362,962,63], [380093,66794,3843,124],...
Programs
-
PARI
{T(n,k)=local(P,D);D=matrix(n+1,n+1,r,c,if(r==c,r)); P=matrix(n+1,n+1,r,c,if(r>=c,(-1)^(r-c)*(c^3+3*c^2+3*c)^(r-c)/(r-c)!)); return(if(n
Comments