cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103243 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^3)^(n-k)/(n-k)! for n >= k >= 1.

Original entry on oeis.org

1, 7, 1, 315, 26, 1, 45682, 2600, 63, 1, 15646589, 675194, 11655, 124, 1, 10567689552, 366349152, 4861458, 37944, 215, 1, 12503979423607, 361884843866, 3882676581, 23641468, 100835, 342, 1, 23841011541867520, 591934698991168, 5318920238688
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

Define triangular matrix P by P(n,k) = (-k^3-3k^2-3k)^(n-k)/(n-k)!, then M = P*D*P^-1 = A103237 satisfies: M^3 + 3M^2 + 3M = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row. Essentially equal to square array A082172 as a triangular matrix. The first column is A082160 (quasi-acyclic automata with 3 inputs).

Examples

			Rows of unreduced fractions T(n,k)/(n-k)! begin:
  [1/0! ],
  [7/1!, 1/0! ],
  [315/2!, 26/1!, 1/0! ],
  [45682/3!, 2600/2!, 63/1!, 1/0! ],
  [15646589/4!, 675194/3!, 11655/2!, 124/1!, 1/0! ],
  [10567689552/5!, 366349152/4!, 4861458/3!, 37944/2!, 215/1!, 1/0! ], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
  [1/0! ],
  [ -7/1!, 1/0! ],
  [49/2!, -26/1!, 1/0! ],
  [ -343/3!, 676/2!, -63/1!, 1/0! ],
  [2401/4!, -17576/3!, 3969/2!, -124/1!, 1/0! ],
  [ -16807/5!, 456976/4!, -250047/3!, 15376/2!, -215/1!, 1/0! ], ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^3)^(r-c)/(r-c)!))); return(if(n
    				

Formula

For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(1-(m+1)^3)^(n-m)*T(m, k). For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(1-(k+1)^3)^(j-k)*T(n, j).