A103245 Triangle read by rows: T(n,k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n.
1, 3, 2, 10, 10, 5, 35, 42, 35, 13, 126, 168, 180, 117, 34, 462, 660, 825, 715, 374, 89, 1716, 2574, 3575, 3718, 2652, 1157, 233, 6435, 10010, 15015, 17745, 15470, 9345, 3495, 610, 24310, 38896, 61880, 80444, 80920, 60520, 31688, 10370, 1597, 92378
Offset: 0
Examples
Triangle begins: 1; 3, 2; 10, 10, 5; 35, 42, 35, 13; 126, 168, 180, 117, 34;
References
- S. G. Guba, Problem No. 174, Issue No. 4, July-August 1965, p. 73 of Matematika v Skole.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- V. E. Hoggatt, Jr. and L. Carlitz, Problem H-77, The Fibonacci Quarterly, 5, No. 3, 1967, 256-258.
Crossrefs
Programs
-
Maple
with(combinat): T:=(n,k)->binomial(2*n+1,n-k)*fibonacci(2*k+1): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
Table[Binomial[2 n + 1, n - k] Fibonacci[2 k + 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2019 *)
Formula
T(n, k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n.