cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103245 Triangle read by rows: T(n,k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n.

Original entry on oeis.org

1, 3, 2, 10, 10, 5, 35, 42, 35, 13, 126, 168, 180, 117, 34, 462, 660, 825, 715, 374, 89, 1716, 2574, 3575, 3718, 2652, 1157, 233, 6435, 10010, 15015, 17745, 15470, 9345, 3495, 610, 24310, 38896, 61880, 80444, 80920, 60520, 31688, 10370, 1597, 92378
Offset: 0

Views

Author

Emeric Deutsch, Mar 19 2005

Keywords

Examples

			Triangle begins:
    1;
    3,   2;
   10,  10,   5;
   35,  42,  35,  13;
  126, 168, 180, 117,  34;
		

References

  • S. G. Guba, Problem No. 174, Issue No. 4, July-August 1965, p. 73 of Matematika v Skole.

Crossrefs

Column 0 is A001700.
Column 1 is A024483.
T(n, n) = A001519(n+1) (the odd-indexed Fibonacci numbers).
Row sums are the powers of 5 (A000351).
Alternating row sums yield A054108.

Programs

  • Maple
    with(combinat): T:=(n,k)->binomial(2*n+1,n-k)*fibonacci(2*k+1): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Binomial[2 n + 1, n - k] Fibonacci[2 k + 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2019 *)

Formula

T(n, k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n.