A103237
Triangular matrix T, read by rows, that satisfies: T^3 + 3T^2 + 3T = SHIFTUP(T), also T^(n+2) + 3T^(n+1) + 3T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
Original entry on oeis.org
1, 7, 2, 133, 26, 3, 5362, 962, 63, 4, 380093, 66794, 3843, 124, 5, 42258384, 7380100, 409248, 11284, 215, 6, 6830081860, 1190206134, 65160081, 1709836, 27305, 342, 7, 1520132414241, 264665899160, 14416260516, 371199704, 5585270, 57798, 511, 8
Offset: 0
Rows of T begin:
[1],
[7,2],
[133,26,3],
[5362,962,63,4],
[380093,66794,3843,124,5],
[42258384,7380100,409248,11284,215,6],
[6830081860,1190206134,65160081,1709836,27305,342,7],...
Rows of T^2 begin:
[1],
[21,4],
[714,130,9],
[41923,7410,441,16],...
Rows of T^3 begin:
[1],
[49,8],
[2821,494,27],
[238238,41678,2331,64],...
Rows of T^3 + 3*T^2 + 3*T equals SHIFTUP(T):
[7],
[133,26],
[5362,962,63],
[380093,66794,3843,124],...
-
{T(n,k)=local(P,D);D=matrix(n+1,n+1,r,c,if(r==c,r)); P=matrix(n+1,n+1,r,c,if(r>=c,(-1)^(r-c)*(c^3+3*c^2+3*c)^(r-c)/(r-c)!)); return(if(n
A103243
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^3)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 7, 1, 315, 26, 1, 45682, 2600, 63, 1, 15646589, 675194, 11655, 124, 1, 10567689552, 366349152, 4861458, 37944, 215, 1, 12503979423607, 361884843866, 3882676581, 23641468, 100835, 342, 1, 23841011541867520, 591934698991168, 5318920238688
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0! ],
[7/1!, 1/0! ],
[315/2!, 26/1!, 1/0! ],
[45682/3!, 2600/2!, 63/1!, 1/0! ],
[15646589/4!, 675194/3!, 11655/2!, 124/1!, 1/0! ],
[10567689552/5!, 366349152/4!, 4861458/3!, 37944/2!, 215/1!, 1/0! ], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0! ],
[ -7/1!, 1/0! ],
[49/2!, -26/1!, 1/0! ],
[ -343/3!, 676/2!, -63/1!, 1/0! ],
[2401/4!, -17576/3!, 3969/2!, -124/1!, 1/0! ],
[ -16807/5!, 456976/4!, -250047/3!, 15376/2!, -215/1!, 1/0! ], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^3)^(r-c)/(r-c)!))); return(if(n
Showing 1-2 of 2 results.
Comments