cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103257 Number of partitions of 2n free of multiples of 5. All odd parts occur with multiplicity 2 or 4. the even parts occur at most twice.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 28, 40, 54, 72, 96, 126, 164, 212, 272, 346, 436, 548, 684, 850, 1052, 1296, 1588, 1940, 2362, 2864, 3462, 4172, 5012, 6004, 7172, 8548, 10160, 12048, 14256, 16830, 19828, 23312, 27356, 32040
Offset: 0

Views

Author

Noureddine Chair, Jan 27 2005

Keywords

Comments

Convolution of A261796 and A261797. - Vaclav Kotesovec, Sep 01 2015

Examples

			E.g. a(5) = 14 because 10 can be written as 8+2 = 8+1+1 = 6+4 = 6+2+2 = 6+2+1+1 = 6+1+1+1+1 = 4+4+2 = 4+4+1+1 = 4+3+3 = 4+2+2+1+1 = 4+2+1+1+1+1 = 3+3+2+2 = 3+3+2+1+1 = 3+3+1+1+1+1.
		

Crossrefs

Programs

  • Maple
    series(product(((1+x^k)*(1-x^(3*k))*(1-x^(5*k)))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))),k=1..100),x=0,100);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)*(1-x^(3*k))*(1-x^(5*k)))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
  • PARI
    q='q+O('q^33); E(k)=eta(q^k);
    Vec( (E(2)*E(3)^2*E(5)^2) / (E(1)^2*E(6)*E(10)) ) \\ Joerg Arndt, Sep 01 2015

Formula

G.f.: (theta_4(0, x^3)*theta_4(0, x^5))/theta_4(0, x).
G.f.: (E(2)*E(3)^2*E(5)^2) / (E(1)^2*E(6)*E(10)) where E(k) = Product_{n>=1} 1-q^(k*n). - Joerg Arndt, Sep 01 2015
a(n) ~ exp(Pi*sqrt(7*n/15)) / sqrt(15*n). - Vaclav Kotesovec, Sep 01 2015

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015
Maple program fixed by Vaclav Kotesovec, Sep 01 2015