A103259 Number of partitions of 2n prime to 3,5 with all odd parts occurring with even multiplicities. There is no restriction on the even parts.
1, 2, 4, 6, 10, 14, 20, 28, 40, 54, 72, 96, 126, 164, 212, 274, 350, 444, 560, 704, 878, 1092, 1352, 1668, 2048, 2506, 3056, 3714, 4500, 5436, 6552, 7872, 9436, 11280, 13456, 16012, 19014, 22532, 26648, 31452, 37052, 43572, 51148, 59940, 70128, 81922, 95548
Offset: 0
Keywords
Examples
a(5) = 14 because 10 can be written as 8+2 = 8+1+1 = 4+4+2 = 4+4+1+1 = 4+2+2+2 = 4+2+2+1+1 = 4+2+1+1+1+1 = 4+1+1+1+1+1+1 = 2+2+2+2+2 = 2+2+2+2+1+1 = 2+2+2+1+1+1+1 = 2+2+1+1+1+1+1+1 = 2+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
Programs
-
Maple
series(product((1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))),k=1..100),x=0,100);
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
-
PARI
q='q+O('q^33); E(k)=eta(q^k); Vec( (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) ) \\ Joerg Arndt, Sep 01 2015
Formula
G.f.: (theta_4(0, x^3)*theta_4(0, x^5))/(theta_4(0, x)*theta_4(0, x^(15))).
G.f.: (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) where E(k) = prod(n>=1, 1-q^k ). - Joerg Arndt, Sep 01 2015
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
Extensions
Example corrected by Vaclav Kotesovec, Sep 01 2015
Maple program corrected by Vaclav Kotesovec, Sep 01 2015
Comments