cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103263 Number of partitions of n into distinct parts prime to 3 and 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 22, 25, 28, 30, 33, 36, 39, 43, 48, 52, 56, 61, 67, 73, 80, 87, 94, 101, 110, 120, 130, 141, 152, 164, 177, 192, 207, 223, 240, 258, 278, 301, 324, 348, 373, 400, 429, 461, 496
Offset: 0

Views

Author

Noureddine Chair, Feb 21 2005

Keywords

Examples

			E.g. a(15)=5 because we can write 15 as 14+1=13+2=11+4=8+7=8+4+2+1.
		

Programs

  • Maple
    series(product((1+x^k)*(1+x^(15*k))/((1+x^(3*k))*(1+x^(5*k))),k=1..100),x=0,100);
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^k)(1 + x^(15*k))/((1 + x^(3k))*(1 + x^(5k))), {k, 100}], {x, 0, 75}], x] (* Robert G. Wilson v, Feb 22 2005 *)
  • PARI
    {a(n)=local(A); if (n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)*eta(x^3+A)*eta(x^5+A)*eta(x^30+A)/ (eta(x+A)*eta(x^6+A)*eta(x^10+A)*eta(x^15+A)), n))} /* Michael Somos, Sep 22 2005 */

Formula

Expansion of q^(-1/3)(eta(q^2)*eta(q^3)*eta(q^5)*eta(q^30))/(eta(q)*eta(q^6)*eta(q^10)*eta(q^15)) in powers of q. - Michael Somos, Sep 22 2005.
G.f.: product_{k>0}((1+x^k)*(1+x^(15k)))/((1+x^(3k))*(1+x^(5k))).
Euler transform of period 30 sequence [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, ...]. - Michael Somos, Sep 22 2005
Given g.f. A(x), then B(x)=x*A(x^3) satisfies 0=f(B(x), B(x^2)) where f(u, v)=u*(u-v^2)^2 +v*(v-u^2)^2 -u*v -(u*v)^3. - Michael Somos, Sep 22 2005
Given g.f. A(x), then B(x)=x*A(x^3) satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u, v, w)=(v+u*w)^2 -v*(u^2+w^2). - Michael Somos, Sep 22 2005
G.f.: Product_{k>0} (1+x^k-x^(3k)-x^(4k)-x^(5k)+x^(7k)+x^(8k)). - Michael Somos Sep 22 2005
a(n) ~ exp(2*Pi*sqrt(2*n/5)/3) / (2^(3/4) * sqrt(3) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015

Extensions

More terms from Robert G. Wilson v, Feb 22 2005