cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A103310 Largest prime primitive root of n that is less than n, or 0 if none exists.

Original entry on oeis.org

0, 0, 0, 2, 3, 3, 5, 5, 0, 5, 7, 7, 0, 11, 5, 0, 0, 11, 11, 13, 0, 0, 19, 19, 0, 23, 19, 23, 0, 19, 0, 17, 0, 0, 31, 0, 0, 19, 29, 0, 0, 29, 0, 29, 0, 0, 43, 43, 0, 47, 47, 0, 0, 41, 47, 0, 0, 0, 47, 47, 0, 59, 53, 0, 0, 0, 0, 61, 0, 0, 0, 67, 0, 59, 61, 0, 0, 0, 0, 59, 0, 59, 71, 79, 0, 0, 73
Offset: 0

Views

Author

Harry J. Smith, Jan 29 2005

Keywords

Crossrefs

Programs

  • Maple
    hasproot:= proc(n)
      if n::odd then nops(numtheory:-factorset(n))=1
      else padic:-ordp(n,2)=1 and nops(numtheory:-factorset(n/2))=1
      fi
    end proc;
    hasproot(2):= true: hasproot(4):= true:
    f:= proc(n) local p,t;
      if not hasproot(n) then return 0 fi;
      t:= numtheory:-phi(n);
      p:= prevprime(n);
      while not numtheory:-order(p,n)=t do
        if p = 2 then return 0 fi;
        p:= prevprime(p);
      od;
      p
    end proc:
    f(0):= 0: f(1):= 0: f(2):= 0:
    map(f, [$0..100]); # Robert Israel, Sep 08 2020
  • Mathematica
    a[n_] := Module[{R = PrimitiveRootList[n], s}, s = Select[R, # < n && PrimeQ[#]&]; If[s == {}, 0, s[[-1]]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 01 2023 *)

A103335 Numbers whose smallest primitive root (A046145) is not prime.

Original entry on oeis.org

1, 2, 41, 109, 151, 229, 251, 271, 313, 337, 362, 367, 409, 439, 542, 626, 674, 733, 761, 818, 878, 971, 991, 1021, 1031, 1069, 1289, 1297, 1303, 1429, 1471, 1489, 1681, 1759, 1783, 1789, 1811, 1871, 1873, 1879, 2062, 2137, 2342, 2411, 2441, 2551, 2594
Offset: 1

Views

Author

Harry J. Smith, Jan 31 2005

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n)
      local r;
      r:= numtheory:-primroot(n);
      r <> FAIL and not isprime(r)
    end proc:
    filter(1):= true:
    select(filter, [$1..3000]); Robert Israel, Sep 08 2020
  • Mathematica
    L = {}; Do[ If[!PrimeQ[ Min[ Select[ Range[n], CoprimeQ[#, n] && MultiplicativeOrder[#, n] == CarmichaelLambda[n] &]]],
    L = Append[L, n]], {n, 1, 3000}]; L (* Jonathan Sondow, May 17 2017 *)

Extensions

Offset changed by Robert Israel, Sep 08 2020

A103336 Numbers whose largest primitive root (A046146) is not prime.

Original entry on oeis.org

1, 2, 11, 17, 19, 23, 29, 31, 37, 38, 41, 43, 47, 53, 58, 59, 62, 67, 71, 73, 74, 79, 81, 82, 83, 86, 89, 94, 97, 101, 107, 113, 118, 121, 122, 125, 127, 131, 134, 137, 139, 146, 149, 151, 157, 158, 162, 163, 167, 173, 178, 179, 191, 193, 194, 197, 211, 218, 223
Offset: 1

Views

Author

Harry J. Smith, Jan 31 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[250], #==1 || ((p = PrimitiveRootList[#]) != {} && ! PrimeQ[Max @ p]) &] (* Amiram Eldar, Sep 25 2021 *)

Extensions

Offset corrected by Amiram Eldar, Sep 25 2021

A103337 Smallest primitive root of numbers in sequence A103335.

Original entry on oeis.org

0, 1, 6, 6, 6, 6, 6, 6, 10, 10, 21, 6, 21, 15, 15, 15, 15, 6, 6, 21, 15, 6, 6, 10, 14, 6, 6, 10, 6, 6, 6, 14, 6, 6, 10, 6, 6, 14, 10, 6, 21, 10, 35, 6, 6, 6, 15, 6, 6, 10, 21, 14, 6, 33, 6, 6, 10, 6, 6, 6, 10, 6, 22, 15, 15, 6, 10, 12, 6, 15, 15, 10, 14, 21, 6, 15, 6, 6, 6, 6, 6, 6, 6, 10, 10, 6
Offset: 1

Views

Author

Harry J. Smith, Jan 31 2005

Keywords

Crossrefs

Programs

Extensions

Offset changed by Robert Israel, Sep 08 2020

A103338 Largest primitive root of numbers in sequence A103336.

Original entry on oeis.org

0, 1, 8, 14, 15, 21, 27, 24, 35, 33, 35, 34, 45, 51, 55, 56, 55, 63, 69, 68, 69, 77, 77, 75, 80, 77, 86, 91, 92, 99, 104, 110, 115, 117, 115, 123, 118, 128, 117, 134, 135, 141, 147, 146, 152, 153, 155, 159, 165, 171, 175, 176, 189, 188, 189, 195, 207, 207, 214
Offset: 1

Views

Author

Harry J. Smith, Jan 31 2005

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local m; uses NumberTheory;
      if n::odd then
        if NumberOfPrimeFactors(n,distinct) > 1 then return NULL fi;
      elif n mod 4 = 0 or NumberOfPrimeFactors(n,distinct) > 2 then return NULL
      fi;
      m:= PrimitiveRoot(n, ith=Totient(Totient(n)));
      if isprime(m) then NULL else m fi
    end proc:
    f(1):= 0:map(f, [$1..300]); # Robert Israel, Dec 01 2024

Extensions

Offset changed by Robert Israel, Dec 01 2024

A279398 a(n) is the smallest prime primitive root modulo A193305(n).

Original entry on oeis.org

3, 5, 2, 3, 3, 5, 7, 2, 7, 2, 3, 3, 5, 3, 3, 5, 3, 3, 5, 2, 7, 3, 5, 3, 3, 11, 2, 7, 2, 7, 7, 5, 3, 2, 5, 2, 3, 5, 3, 5, 5, 11, 3, 7, 2, 3, 3, 17, 3, 3, 3, 3, 7, 5, 3, 5, 7, 3
Offset: 1

Views

Author

Wolfdieter Lang, Jan 18 2017

Keywords

Comments

Values taken from A103309 (Robert Israel).
If there should be no prime primitive root for A193305(n) then a(n) = 0.

Examples

			n = 1: 2^k (mod 4) is never 1 for k >=1. 3^1 = 3, 3^2 = 3^phi(4) = 9 == 1 (mod 4).
		

Crossrefs

Showing 1-6 of 6 results.