A103351 Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).
1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1
Crossrefs
Programs
-
Mathematica
s=0;lst={};Do[s+=n^1/n^10;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *) Table[ HarmonicNumber[n, 9] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *)
Formula
a(n) = numerator(sum_{k=1..n} 1/k^9).
G.f. for rationals Zeta(9, n): polylogarithm(9, x)/(1-x).
Comments