cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A103244 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^2-k)^(n-k)/(n-k)! for n >= k >= 1.

Original entry on oeis.org

1, 2, 1, 20, 6, 1, 512, 108, 12, 1, 25392, 4104, 336, 20, 1, 2093472, 273456, 17568, 800, 30, 1, 260555392, 28515456, 1500288, 54800, 1620, 42, 1, 45819233280, 4311418752, 191549952, 5808000, 140400, 2940, 56, 1, 10849051434240, 894918533760, 34352605440, 887256000, 18033840, 313992, 4928, 72, 1
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

Define triangular matrix P by P(n,k) = (-k^2-k)^(n-k)/(n-k)!, then M = P*D*P^-1 = A103238 satisfies: M^2 + M = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row.
First column is A103353.

Examples

			This triangle begins:
1;
2, 1;
20, 6, 1;
512, 108, 12, 1;
25392, 4104, 336, 20, 1;
2093472, 273456, 17568, 800, 30, 1;
260555392, 28515456, 1500288, 54800, 1620, 42, 1;
45819233280, 4311418752, 191549952, 5808000, 140400, 2940, 56, 1;
10849051434240, 894918533760, 34352605440, 887256000, 18033840, 313992, 4928, 72, 1; ...
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[2/1!, 1/0!],
[20/2!, 6/1!, 1/0!],
[512/3!, 108/2!, 12/1!, 1/0!],
[25392/4!, 4104/3!, 336/2!, 20/1!, 1/0!],
[2093472/5!, 273456/4!, 17568/3!, 800/2!, 30/1!, 1/0!],...
forming the inverse of matrix P where P(n,k) = (-1)^(n-k)*(k^2+k)^(n-k)/(n-k)!:
[1/0!],
[ -2/1!, 1/0!],
[4/2!, -6/1!, 1/0!],
[ -8/3!, 36/2!, -12/1!, 1/0!],
[16/4!, -216/3!, 144/2!, -20/1!, 1/0!], ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 9;
    P = Table[If[n >= k, (-k^2-k)^(n-k)/(n-k)!, 0], {n, 1, nmax}, {k, 1, nmax}] // Inverse;
    T[n_, k_] := If[n < k || k < 1, 0, P[[n, k]]*(n - k)!];
    Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 09 2018, from PARI *)
  • PARI
    {T(n,k)=local(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^2-c)^(r-c)/(r-c)!))); return(if(n
    				

Formula

For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^2-m)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^2-k)^(j-k)*T(n, j).
Showing 1-1 of 1 results.