cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103388 Primes in A103378.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 71, 127, 157, 227, 257, 293, 349, 419, 503, 32299, 33343, 72421, 80429, 134269, 140473, 252761, 2499061, 201329923, 607488611, 1005428989, 2920552289, 8185638173, 10676478541, 14058719281, 15985335181, 34020175663, 159315910211, 1448256661853
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Crossrefs

Programs

  • Maple
    A103378 := proc(n) option remember ; if n <= 11 then 1; else procname(n-10)+procname(n-11) ; fi; end: isA103378 := proc(n) option remember ; local i ; for i from 1 do if A103378(i) = n then RETURN(true) ; elif A103378(i) > n then RETURN(false) ; fi; od: end: A103388 := proc(n) option remember ; local a; if n = 1 then 2; else a := nextprime(procname(n-1)) ; while true do if isA103378(a) then RETURN(a) ; fi; a := nextprime(a) ; od: fi; end: for n from 1 to 37 do printf("%d, ",A103388(n)) ; od: # R. J. Mathar, Aug 30 2008
  • Mathematica
    Clear[a]; k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103387=Union[Select[Array[a, 1000], PrimeQ]] (* See A103377 and A103397 for code related to those. - M. F. Hasler, Sep 19 2015, . *)
  • PARI
    {a=vector(m=10, n, 1); L=0; for(n=m, 10^5, isprime(a[i=n%m+1]+=a[(n+1)%m+1]) && LM. F. Hasler, Sep 19 2015

Formula

Intersection of A103378 with A000040.

Extensions

Corrected from a(16) on by R. J. Mathar, Aug 30 2008
Edited and more terms added by M. F. Hasler, Sep 19 2015