cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103415 Triangle, read by rows, T(n,k) = A000129(n+1) - Sum_{j=1..k} t(n+1, j), where t(n, k) is defined in the formula section.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 12, 11, 6, 1, 29, 28, 21, 8, 1, 70, 69, 60, 35, 10, 1, 169, 168, 157, 116, 53, 12, 1, 408, 407, 394, 333, 204, 75, 14, 1, 985, 984, 969, 884, 653, 332, 101, 16, 1, 2378, 2377, 2360, 2247, 1870, 1189, 508, 131, 18, 1, 5741, 5740, 5721, 5576, 5001, 3712, 2029, 740, 165, 20, 1
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 04 2005

Keywords

Comments

Triangle is generated from the product A*B of the infinite lower triangular matrices A = A008288(n,k) and B =
1;
1 1;
1 1 1;
1 1 1 1; ...
Determinant(A*B) = 1 for all n.
Absolute values of coefficients of characteristic polynomials of n-th matrix are the (n+1)-th row of A007318 (Pascal's triangle). As they are:
x^1 - 1;
x^2 - 2*x^1 + 1;
x^3 - 3*x^2 + 3*x^1 - 1;
x^4 - 4*x^3 + 6*x^2 - 4*x^1 + 1;
x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x^1 - 1.

Examples

			Triangle begins as:
    1;
    2,   1;
    5,   4,   1;
   12,  11,   6,   1;
   29,  28,  21,   8,   1;
   70,  69,  60,  35,  10,  1;
  169, 168, 157, 116,  53, 12,  1;
  408, 407, 394, 333, 204, 75, 14, 1;
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:= If[k==0, (2*Boole[n<2] + LucasL[n-1, 2]*Boole[n>1])/2, Binomial[n-1, k-1]*Hypergeometric2F1[1-k, k-n, 1-n, -1]];
    st[n_, k_]:= Sum[t[n+1, j], {j,k}];
    T[n_, k_]:= Fibonacci[n+1, 2] - st[n, k];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 25 2021 *)
  • PARI
    Pell(n) = if( n<2, n, 2*Pell(n-1) + Pell(n-2) );
    t(n, k) = if(n<3, 1, if(k==1||k==n, 1, t(n-1,k) + t(n-1,k-1) + t(n-2,k-1) ));
    st(n, k) = sum(i=1, k, t(n+1,i));
    T(n, k) = Pell(n+1) - st(n,k);
    for(n=0, 10, for(k=0, n, print1(T(n,k), ",")); print()) \\ modified by G. C. Greubel, May 25 2021
    
  • Sage
    @CachedFunction
    def t(n,k): return 1 if (n<3) else 1 if (k==1 or k==n) else t(n-1,k) + t(n-1,k-1) + t(n-2,k-1)
    def st(n,k): return sum(t(n+1, j) for j in (1..k))
    def T(n,k): return lucas_number1(n+1,2,-1) - st(n,k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021

Formula

T(n, k) = Pell(n+1) - ST(n, k), where ST(n, k) = Sum_{j=1..k} t(n+1, j), t(n, k) = t(n-1,k) + t(n-1,k-1) + t(n-2,k-1), t(n, 1) = t(n, n) = 1 and t(0, k) = t(1, k) = t(2, k) = 1.
T(n, 0) = A000129(n+1).
T(n, 1) = A005409(n) = A000129(n) - 1.
Sum_{k=0..n} T(n, k) = A026937(n).
From G. C. Greubel, May 25 2021: (Start)
T(n, k) = A000129(n+1) - st(n,k), where st(n, k) = Sum_{j=1..k} t(n+1, j), t(n, k) = A008288(n-1, k-1) for n >= 1 and k >= 1, and t(n, 0) = (1/2)*(2*[n<2] + A002203(n-1)*[n>1]).
T(n, n) = A000012(n).
T(n, n-1) = A005843(n+1).
T(n, n-2) = A093328(n-1).
T(n, n-3) = (4/3)*((n-3)^3 + 5*(n-3) + 3).
T(n, n-4) = (1/3)*(2*(n-4)^2 + 22*(n-4)^2 + 22*(n-4) + 39). (End)