A103452 Inverse of number triangle A103451.
1, -1, 1, -1, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins 1; -1, 1; -1, 0, 1; -1, 0, 0, 1; -1, 0, 0, 0, 1; -1, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; Production matrix begins -1, 1; -2, 1, 1; -2, 1, 0, 1; -2, 1, 0, 0, 1; -2, 1, 0, 0, 0, 1; -2, 1, 0, 0, 0, 0, 1; -2, 1, 0, 0, 0, 0, 0, 1; -2, 1, 0, 0, 0, 0, 0, 0, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10010 (Rows 0 <= n <= 140)
Programs
-
Mathematica
Table[Range[n] /. {k_ /; k == 1 && n != 1 -> -1, k_ /; k == n -> 1, Integer -> 0}, {n, 15}] // Flatten (* _Michael De Vlieger, Jul 21 2016 *)
-
Sage
flatten([[1 if k==n else -1 if k==0 else 0 for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 18 2021
Formula
T(n,k) = 1 if k = n, -1 if k = 0, otherwise 0.
Sum_{k=0..n} T(n, k) = 0^n (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = 0^n - (1-(-1)^n)/2 (diagonal sums).
G.f.: (1 - 2*x + y*x^2)/((1-x)*(1-y*x)). - Philippe Deléham, Feb 11 2012
Comments