A103479 Positive integers k for which 1 + 6*2^(k+2) divides the Fermat number 1 + 2^2^k.
38, 2478782
Offset: 1
Examples
a(1)=38 because 38 is the smallest positive integer k for which 1 + 6*2^(k+2) divides the Fermat number 1 + 2^2^k.
Links
- Wilfrid Keller, Prime factors k*2^n + 1 of Fermat numbers F_m
Programs
-
Mathematica
aQ[n_] := PowerMod[2, 2^n, 1 + 6*2^(n+2)] == 6*2^(n+2); Select[Range[3000000], aQ] (* Amiram Eldar, Dec 04 2018 *)
-
PARI
isOK(n) = Mod(2, 1+3*2^(n+3))^(2^n) + 1 == 0 \\ Jeppe Stig Nielsen, Dec 03 2018
Extensions
Sequence name trimmed by Jeppe Stig Nielsen, Dec 03 2018
Comments