cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103523 Concatenations of pairs of primes that differ by 100.

Original entry on oeis.org

3103, 7107, 13113, 31131, 37137, 67167, 73173, 79179, 97197, 127227, 139239, 151251, 157257, 163263, 181281, 193293, 211311, 283383, 331431, 349449, 367467, 379479, 409509, 421521, 457557, 463563, 487587, 499599, 541641, 547647, 577677
Offset: 1

Views

Author

Jonathan Vos Post, Mar 21 2005

Keywords

Comments

Integers in this sequence can never be prime, as, starting from the second one, they are all multiples of 3.

Examples

			9191019 is in this sequence because 919 is prime, 919+100 = 1019 is prime and 9191019 is the concatenation of those two primes differing by 100.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) if isprime(n) and isprime(n+100) then 10^(1+ilog10(n+100))*n+n+100 fi end proc:
    map(f, [3,seq(i,i=7..1000,6)]); # Robert Israel, Dec 07 2015
  • Mathematica
    FromDigits[Join@@IntegerDigits/@{#,#+100}]&/@Select[Prime@Range@200,PrimeQ[#+100]&] (* Giorgos Kalogeropoulos, Jul 04 2021 *)
  • Python
    from sympy import isprime, primerange as prange
    def auptop(lim):
      return [int(str(p)+str(p+100)) for p in prange(2, lim+1) if isprime(p+100)]
    print(auptop(577)) # Michael S. Branicky, Jul 04 2021

Formula

List: concatenate(p, p+100) iff p and p+100 are primes.