A103536 Number of geometrically distinct edge-unfoldings of a regular n-gonal pyramid.
4, 8, 15, 33, 67, 152, 340, 791, 1845, 4411, 10557, 25600, 62332, 152780, 375859, 928841, 2302191, 5724425, 14269196, 35655157, 89277769, 223982893, 562912585, 1417014038, 3572323492, 9018370892, 22796073015, 57691327693, 146165207035, 370706641856, 941111617892, 2391394225355, 6081869637093
Offset: 3
Keywords
Links
- Z. Lengvárszky and Rick Mabry, Enumerating nets of prism-like polyhedra, Acta Sci. Math. (Szeged) 83:3-4 (2017), 377-392.
Programs
-
Mathematica
-1 + (1/2) Fibonacci[n] + (1/(2 n)) Sum[Fibonacci[2 GCD[j, n] - 1] + Fibonacci[2 GCD[j, n] + 1], {j, 1, n}] (* Rick Mabry, Apr 10 2023 *)
-
PARI
a(n) = {sum(j=1, n, fibonacci(2*gcd(j,n) - 1) + fibonacci(2*gcd(j,n) + 1))/(2*n) + fibonacci(n)/2 - 1} \\ Andrew Howroyd, Apr 10 2023
Formula
a(n) = -1 + (1/2)*F(n) + (1/(2*n))*Sum_{j=1..n} (F(2*gcd(j,n)-1) + F(2*gcd(j,n)+1)), where F(n) is the usual n-th Fibonacci number. Simplified from link. - Rick Mabry, Apr 10 2023
Extensions
More terms from Rick Mabry, Apr 10 2023
Definition changed by Rick Mabry, Apr 17 2023
Comments