cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103546 Decimal expansion of the negated value of the smallest real root of the quintic equation x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x -1 = 0.

Original entry on oeis.org

2, 4, 8, 6, 3, 4, 3, 7, 6, 4, 9, 5, 9, 0, 7, 9, 6, 6, 5, 2, 6, 7, 1, 9, 5, 3, 3, 0, 9, 7, 0, 7, 2, 2, 1, 2, 0, 1, 4, 0, 9, 0, 3, 8, 5, 2, 5, 9, 2, 7, 0, 5, 8, 1, 9, 7, 6, 4, 9, 9, 4, 0, 3, 3, 2, 9, 9, 1, 1, 1, 8, 5, 4, 0, 0, 1, 1, 4, 7, 3, 0, 5, 5, 1, 5, 5, 9, 0, 9, 1, 0, 4, 6, 9, 2, 8, 0, 8, 0, 1, 7, 2, 3, 1, 7
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 23 2005

Keywords

Comments

This is an approximation to the Feigenbaum reduction parameter.
The other two real roots are 0.76660865407289... and -1.16317291980104...

Examples

			The real roots are (roughly) -2.486343765, -1.163172920, 0.7666086541.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1 == 0, {x, -3}, WorkingPrecision -> 2^7][[1, 2]]][[1]] (* Robert G. Wilson v, Mar 26 2005 *)
    Root[#^5 + 2#^4 - 2#^3 - #^2 + 2# - 1&, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    polrootsreal(x^5 - 2*x^4 - 2*x^3 + x^2 + 2*x + 1)[3] \\ Charles R Greathouse IV, Apr 14 2014