cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A103616 Decimal expansion of the largest real root of the quintic equation x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x -1 = 0.

Original entry on oeis.org

7, 6, 6, 6, 0, 8, 6, 5, 4, 0, 7, 2, 8, 9, 1, 2, 0, 3, 7, 8, 3, 1, 8, 8, 4, 7, 2, 9, 8, 5, 2, 3, 0, 5, 9, 6, 7, 2, 1, 1, 4, 5, 4, 8, 5, 5, 4, 0, 5, 5, 5, 6, 7, 9, 4, 7, 1, 5, 5, 8, 0, 5, 0, 6, 2, 4, 5, 9, 6, 3, 0, 9, 1, 2, 9, 1, 6, 3, 5, 2, 8, 9, 0, 5, 6, 2, 7, 7, 4, 8, 3, 2, 9, 2, 2, 5, 6, 6, 1, 8, 8, 9, 6, 9, 8
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 24 2005

Keywords

Comments

See comments in A103546.

Examples

			0.76660865407289120......
		

Crossrefs

Cf. A103546.

Programs

  • Mathematica
    RealDigits[Root[x^5+2x^4-2x^3-x^2+2x-1,3],10,120][[1]] (* Harvey P. Dale, May 19 2019 *)
  • PARI
    polrootsreal(x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x -1)[3] \\ Charles R Greathouse IV, Apr 15 2014

A153122 G.f.: 1/p(x) where p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1.

Original entry on oeis.org

1, -2, 6, -15, 38, -95, 237, -590, 1468, -3651, 9079, -22575, 56131, -139563, 347004, -862774, 2145156, -5333599, 13261165, -32971820, 81979285, -203828691, 506788203, -1260049698, 3132916721, -7789507968, 19367394583, -48154000782
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 18 2008

Keywords

Comments

a(n)/a(n-1) tends to the approximation to Feigenbaum's constant mentioned in A103546. = 2.48634376497....;.

Crossrefs

Cf. A103546.

Programs

  • Mathematica
    f[x_] = x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1;
    g[x] = ExpandAll[x^5*f[1/x]]'
    a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]

Formula

p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1; a(n)=coefficient_expansion(1/(x^5*p(1/x))).

Extensions

Edited by N. J. A. Sloane, Dec 19 2008
Showing 1-2 of 2 results.