A103558 Semiprimes of the form p^2 + q^2, where p and q are primes.
34, 58, 74, 146, 178, 194, 218, 298, 314, 365, 386, 458, 482, 533, 538, 554, 698, 818, 866, 965, 1082, 1202, 1322, 1418, 1538, 1658, 1685, 1706, 1853, 1858, 1874, 2018, 2042, 2138, 2218, 2234, 2258, 2498, 2642, 2813, 2818, 2858, 2978, 3098, 3218, 3338
Offset: 1
Examples
34 is a term because 3^2 + 5^2 = 34 = 2*17; 58 is a term because 3^2 + 7^2 = 58 = 2*29; 74 is a term because 5^2 + 7^2 = 74 = 2*37.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # to get all terms <= N P:= select(isprime, [$1..floor(sqrt(N))]): Res:= NULL: for i from 1 to nops(P) do for j from 1 to i-1 do r:= P[i]^2 + P[j]^2; if r > N then break fi; if numtheory:-bigomega(r) = 2 then Res:= Res, r fi; od od: sort(convert({Res},list)); # Robert Israel, Nov 03 2017
-
Mathematica
fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Sort[ Flatten[ Table[ Prime[p]^2 + Prime[q]^2, {p, 16}, {q, p - 1}]]], fQ[ # ] &] (* Robert G. Wilson v, Mar 23 2005 *)
-
PARI
{m=53;v=[];forprime(p=2,m, forprime(q=nextprime(p+1),m,if(bigomega(k=p^2+q^2)==2, v=concat(v,k))));v=vecsort(v);stop=nextprime(m+1)^2;for(j=1,length(v),if(v[j]
Klaus Brockhaus
Extensions
More terms from Klaus Brockhaus and Robert G. Wilson v, Mar 23 2005
Comments