cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103558 Semiprimes of the form p^2 + q^2, where p and q are primes.

Original entry on oeis.org

34, 58, 74, 146, 178, 194, 218, 298, 314, 365, 386, 458, 482, 533, 538, 554, 698, 818, 866, 965, 1082, 1202, 1322, 1418, 1538, 1658, 1685, 1706, 1853, 1858, 1874, 2018, 2042, 2138, 2218, 2234, 2258, 2498, 2642, 2813, 2818, 2858, 2978, 3098, 3218, 3338
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 23 2005

Keywords

Comments

p and q must be distinct, otherwise p^2 + q^2 = 2*p*p has three prime factors. - Klaus Brockhaus
Even terms are 2*A103739. - Robert Israel, Nov 03 2017

Examples

			34 is a term because 3^2 + 5^2 = 34 = 2*17; 58 is a term because 3^2 + 7^2 = 58 = 2*29; 74 is a term because 5^2 + 7^2 = 74 = 2*37.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    P:= select(isprime, [$1..floor(sqrt(N))]):
    Res:= NULL:
    for i from 1 to nops(P) do
      for j from 1 to i-1 do
        r:= P[i]^2 + P[j]^2;
        if r > N then break fi;
        if numtheory:-bigomega(r) = 2 then Res:= Res, r fi;
    od od:
    sort(convert({Res},list)); # Robert Israel, Nov 03 2017
  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Sort[ Flatten[ Table[ Prime[p]^2 + Prime[q]^2, {p, 16}, {q, p - 1}]]], fQ[ # ] &] (* Robert G. Wilson v, Mar 23 2005 *)
  • PARI
    {m=53;v=[];forprime(p=2,m, forprime(q=nextprime(p+1),m,if(bigomega(k=p^2+q^2)==2, v=concat(v,k))));v=vecsort(v);stop=nextprime(m+1)^2;for(j=1,length(v),if(v[j]Klaus Brockhaus

Extensions

More terms from Klaus Brockhaus and Robert G. Wilson v, Mar 23 2005