A103647 Decimal expansion of area of the largest rectangle under the normal curve.
4, 8, 3, 9, 4, 1, 4, 4, 9, 0, 3, 8, 2, 8, 6, 6, 9, 9, 5, 9, 5, 6, 6, 0, 3, 8, 5, 8, 7, 1, 1, 2, 1, 3, 0, 9, 6, 5, 7, 3, 4, 3, 9, 4, 1, 4, 7, 4, 8, 7, 0, 0, 5, 0, 9, 7, 5, 1, 1, 0, 1, 6, 8, 5, 6, 2, 2, 0, 0, 1, 2, 7, 1, 4, 0, 1, 6, 6, 5, 8, 9, 0, 1, 6, 6, 2, 2, 5, 8, 9, 3, 8, 7, 8, 8, 4, 8, 0, 9, 4, 5, 8, 2, 7, 4
Offset: 0
Examples
0.48394144903828669959566038587112130965734394147487005097511016856...
References
- R. E. Larson, R. P. Hostetler & B. H. Edwards, Calculus of a Single Variable, 5th Edition, D. C. Heath and Co., Lexington, MA Section 5.4 Exponential Functions: Differentiation and Integration, Exercise 61, page 351.
- Yu. V. Prohorov, Asymptotic behavior of the binomial distribution. 1961. Select. Transl. Math. Statist. and Probability, Vol. 1 pp. 87-95. Inst. Math. Statist. and Amer. Math. Soc., Providence, R.I.
Links
- Yu. V. Prohorov, Asymptotic behavior of the binomial distribution, Uspekhi Mat. Nauk, 8:3(55) (1953), 135-142 (in Russian). See lambda1 in theorem 2 p. 137.
- Eric Weisstein's World of Mathematics, Normal Distribution.
Programs
-
Mathematica
RealDigits[ Sqrt[2/(E*Pi)], 10, 111][[1]]
Formula
Equals sqrt(2/Pi)*e^(-1/2).
Comments