cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103654 Primes which are the average of two successive semiprimes.

Original entry on oeis.org

5, 53, 67, 89, 113, 131, 173, 211, 251, 293, 307, 337, 379, 409, 449, 487, 491, 499, 631, 683, 701, 727, 751, 769, 787, 919, 941, 953, 991, 1009, 1039, 1051, 1063, 1117, 1193, 1259, 1399, 1459, 1471, 1499, 1511, 1567, 1627, 1697, 1709, 1733, 1759, 1787, 1801
Offset: 1

Views

Author

Zak Seidov, Feb 12 2005

Keywords

Examples

			a(3)=67 because 65 and 69 are two successive semiprimes closest to 67 and 67=(65+69)/2;a(333)=22679 because 22677 and 22691 are two successive semiprimes closest to 22679 and 22679=(22677+22681)/2.
		

Crossrefs

Indices of these primes: A103655. Primes: A000040, semiprimes: A001358, number of primes between successive semiprimes: A088700, number of semiprimes between two successive primes: A103668.

Programs

  • PARI
    list(lim)=my(v=List(),u=v,t,lim2=lim+log(lim)^2);forprime(p=2,sqrt(lim2),t=p;forprime(q=p,lim2\t,listput(v,t*q)));v=vecsort(Vec(v));for(i=2,#v,t=(v[i]+v[i-1])/2;if(denominator(t)==1&&isprime(t),if(t>lim,break,listput(u,t))));Vec(u) \\ Charles R Greathouse IV, Oct 08 2012

Formula

p=(q+r)/2, where q

p are two successive semiprimes closest to p.