A103662 Smallest power with base>1 and exponent n whose decimal representation doesn't contain the digit 0.
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 9765625, 177147, 531441, 8192, 16384, 32768, 65536, 17179869184, 262144, 524288, 3833759992447475122176, 1582794342217312156827221746448942623537121214738891981, 341427877364219557396646723584, 94143178827, 16777216
Offset: 0
Examples
base / exponent n / base^exponent 2 1 2 2 2 4 2 3 8 2 4 16 2 5 32 2 6 64 2 7 128 2 8 256 2 9 512 5 10 9765625 3 11 177147 3 12 531441 2 13 8192 2 14 16384 2 15 32768 2 16 65536 4 17 17179869184 2 18 262144 2 19 524288 12 20 3833759992447475122176 381 21 1582794342217312156827221746448942623537121214738891981 22 22 341427877364219557396646723584 3 23 94143178827 ... a(10)=9765625 because 5^10 is the smallest 10th power containing no zero in its decimal representation (2^10=1024, 3^10=59049, 4^10=1048576).
Links
- Michel Marcus, Table of n, a(n) for n = 0..39
- M. F. Hasler, Zeroless powers, OEIS wiki, Mar 07 2014
Crossrefs
Cf. A103663 = smallest bases x such that x^n has a zero-less decimal representation.
Programs
-
PARI
A103662(n)=for(b=2,9e9,vecmin(digits(b^n))&&return(b^n)) \\ M. F. Hasler, Mar 08 2014
Formula
a(n) = A103663(n)^n. - M. F. Hasler, Mar 08 2014
Extensions
a(21)=381^21 found by Joshua Zucker.
Edited by Charles R Greathouse IV, Aug 03 2010
Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.
Comments