A103770 A weighted tribonacci sequence, (1,3,9).
1, 1, 4, 16, 37, 121, 376, 1072, 3289, 9889, 29404, 88672, 265885, 796537, 2392240, 7174816, 21520369, 64574977, 193709428, 581117680, 1743420757, 5230158649, 15690480040, 47071742800, 141214610761, 423644159521, 1270933677004
Offset: 0
Links
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 19.
- Index entries for linear recurrences with constant coefficients, signature (1,3,9).
Programs
-
Mathematica
LinearRecurrence[{1, 3, 9}, {1, 1, 4}, {1, 27}] (* Robert P. P. McKone, May 25 2021 *)
Formula
G.f.: 1/(1 - x - 3*x^2 - 9*x^3).
a(n) = Sum_{k=0..n} T(n-k, k)*3^k, T(n, k) = trinomial coefficients (A027907).
a(n) = Sum_{k=0..n} 3^(n-k) * (Sum_{i=0..floor((n-k)/2)} C(n-k-i, i)*C(k, n-k-i)). - Paul Barry, Apr 26 2005
a(n)/3^n converges to 1/2. - Hieronymus Fischer, Feb 02 2006
a(n) = a(n-1) + 3*a(n-2) + 9*a(n-3), n >= 3; a(0)=1, a(1)=1, a(2)=4. - Hieronymus Fischer, Feb 04 2006
Comments