cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103775 Number of ways to write n! as product of distinct squarefree numbers.

Original entry on oeis.org

1, 1, 2, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 15 2005

Keywords

Comments

From Gus Wiseman, Aug 23 2020: (Start)
Also the number of set-systems (sets of sets) whose multiset union is the multiset of prime factors of n!. For example, the a(1) = 1 through a(7) = 3 set-systems (empty columns indicated by dots) are:
0 {1} {1,2} . {1},{1,2},{1,3} . {1},{1,2},{1,3},{1,2,4}
{1},{2} {1},{1,2},{1,4},{1,2,3}
{1},{2},{1,2},{1,3},{1,4}
(End)

Examples

			n=7, 7! = 1*2*3*4*5*6*7 = 5040 = 2*2*2*2*3*3*5*7: a(7) = #{2*3*6*10*14, 2*6*10*42, 2*6*14*30} = 3.
		

Crossrefs

A103774 is the non-strict version.
A337073 is the version for superprimorials, with non-strict version A337072.
A001055 counts factorizations.
A045778 counts strict factorizations.
A048656 counts squarefree divisors of factorials.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A050342 counts set-systems by total sum.
A076716 counts factorizations of factorials.
A116539 counts set-systems covering an initial interval.
A157612 counts strict factorizations of factorials.

Programs

  • Mathematica
    yst[n_]:=yst[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[yst[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[yst[n!]],{n,15}] (* Gus Wiseman, Aug 21 2020 *)

Formula

a(n) = 0 for n > 7;
a(n) = A050326(A000142(n)).