A103813 Partial sums of A102370.
0, 3, 9, 14, 18, 33, 43, 52, 60, 71, 85, 98, 126, 149, 167, 184, 200, 219, 241, 262, 282, 313, 339, 364, 388, 415, 445, 506, 550, 589, 623, 656, 688, 723, 761, 798, 834, 881, 923, 964, 1004, 1047, 1093, 1138, 1198, 1253, 1303, 1352, 1400, 1451, 1505, 1558, 1610, 1673
Offset: 0
References
- Hardy and Wright, Sect. 18.2, for definition of average order.
Links
- David Applegate, Benoit Cloitre, Philippe Deléham, and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
- David Applegate, Benoit Cloitre, Philippe Deléham, and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
Crossrefs
Cf. A102370.
Programs
-
Mathematica
Accumulate[f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s]; Table[ f[n] + n, {n, 0, 53}] ] (* James C. McMahon, Jan 21 2024 *)
Formula
The average order of A102370(n) is n + O(log n).