cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103854 Positive integers n such that n^6 + 1 is semiprime.

Original entry on oeis.org

2, 4, 10, 36, 56, 94, 126, 224, 260, 270, 300, 350, 686, 716, 780, 1036, 1070, 1080, 1156, 1174, 1210, 1394, 1416, 1434, 1440, 1460, 1524, 1550, 1576, 1616, 1654, 1660, 1700, 1756, 1860, 1980, 2054, 2084, 2096, 2116, 2224, 2454, 2600, 2664, 2770, 2864
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2005

Keywords

Comments

n^6+1 can only be prime when n = 1, n^6+1 = 2. This is because the sum of cubes formula gives the polynomial factorization n^6+1 = (n^2+1) * (n^4 - n^2 + 1). Hence n^6+1 can only be semiprime when both (n^2+1) and (n^4 - n^2 + 1) are primes.

Examples

			n n^6+1 = (n^2+1) * (n^4 - n^2 + 1)
2 65 = 5 * 13
4 4097 = 17 * 241
10 1000001 = 101 * 9901
36 2176782337 = 1297 * 1678321
56 30840979457 = 3137 * 9831361
94 689869781057 = 8837 * 78066061
126 4001504141377 = 15877 * 252031501
224 126324651851777 = 50177 * 2517580801
		

Crossrefs

Programs

  • Mathematica
    semiprimeQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ 2Range@1526, semiprimeQ[ #^6 + 1] &] (* Robert G. Wilson v, May 26 2006 *)
    Select[Range[200000], PrimeQ[#^2 + 1] && PrimeQ[(#^6 + 1)/(#^2 + 1)] &] (* Robert Price, Mar 11 2015 *)
  • PARI
    is(n)=my(s=n^2); isprime(s+1) && isprime(s^2-s+1) \\ Charles R Greathouse IV, Aug 31 2021

Formula

a(n)^6 + 1 is semiprime. (a(n)^2+1) is prime and (a(n)^4 - a(n)^2 + 1) is prime.

Extensions

More terms from Robert G. Wilson v, May 26 2006