cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103876 a(n) = -1/10 (mod prime(n)): A test for divisibility by the n-th prime.

Original entry on oeis.org

2, 1, 9, 5, 17, 16, 26, 3, 11, 4, 30, 14, 37, 53, 6, 20, 7, 51, 71, 58, 80, 29, 10, 72, 32, 98, 79, 38, 13, 41, 125, 134, 15, 47, 114, 50, 121, 161, 18, 19, 135, 59, 179, 21, 156, 68, 206, 163, 215, 24, 25, 77, 184, 242, 27, 83, 28, 198, 205, 92, 31, 219, 95, 33, 101, 104
Offset: 4

Views

Author

Alfred S. Posamentier (asp2(AT)juno.com) and Robert G. Wilson v, Feb 10 2005

Keywords

Comments

Given a number M, remove its last digit d, then subtract d*a(n). If the result is divisible by prime(n), then M is also divisible by prime(n). This process may be repeated.
Values of a(n) can be quickly calculated by finding the smallest multiple of prime(n) which ends in a 1, and removing this last digit. E.g., 7 -> 21 -> 2, 11 -> 11 -> 1, 13 -> 91 -> 9, 17 -> 51 -> 5, 19 -> 171 -> 17.
a(n) is the canonical representative, in the interval (0, p), of the inverse of -10, modulo p = prime(n). - M. F. Hasler, Feb 03 2025

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 76-81.

Crossrefs

Programs

  • Maple
    a:= n-> -1/10 mod ithprime(n):
    seq(a(n), n=4..69);  # Alois P. Heinz, Feb 03 2025
  • Mathematica
    a[n_] := Block[{p = Prime[n], k = 1}, While[ Mod[10k + 1, p] != 0, k++ ]; k]; Table[ a[n], {n, 4, 69}]
    PowerMod[-10, -1, Prime[Range[4, 100]]] (* Paolo Xausa, Feb 06 2025 *)
  • PARI
    vector(66,n, my(p=prime(n+3)); p-lift(Mod(10,p)^-1)) \\ Joerg Arndt, Jan 23 2023
    
  • PARI
    a(n)=lift(-1/Mod(10,prime(n)));
    apply(a, [4..66]) \\ M. F. Hasler, Feb 03 2025
  • Python
    import sympy
    [pow(-10, -1, p) for p in sympy.primerange(7,300)]
    # Nicholas Stefan Georgescu, Jan 17 2023
    

Formula

a(n) = p - (10 mod p)^(-1) where p = prime(n). - Joerg Arndt, Jan 23 2023

Extensions

Definition edited by M. F. Hasler, Feb 03 2025