A103878 Expansion of x / ((1-12x)(1-15x)(1-20x)(1-30x)(1-60x)).
0, 1, 137, 12019, 874853, 58067611, 3673451957, 226576032859, 13790081534933, 833490615528571, 50196582942983477, 3017503478665411099, 181223386494229073813, 10878637590184410995131, 652876078076017863582197, 39177315318319288337595739
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..562
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Index entries for linear recurrences with constant coefficients, signature (137,-6750,153000,-1620000,6480000).
Crossrefs
Cf. A001242.
Programs
-
Mathematica
CoefficientList[Series[x/((1-12x)(1-15x)(1-20x)(1-30x)(1-60x)),{x,0,20}],x] (* or *) LinearRecurrence[ {137,-6750,153000,-1620000,6480000},{0,1,137,12019,874853},20] (* Harvey P. Dale, Aug 31 2024 *)
-
PARI
concat(0, Vec(x/(-6480000*x^5+1620000*x^4-153000*x^3+6750*x^2-137*x+1) + O(x^100))) \\ Colin Barker, Apr 26 2015
Formula
a(n) = (1/12) (12^n - 4*15^n + 6*20^n - 4*30^n + 60^n).