A103925 Number of partitions of n into parts but with two kinds of parts of sizes 1,2,3,4,5 and 6.
1, 2, 5, 10, 20, 36, 65, 109, 182, 292, 463, 714, 1091, 1631, 2416, 3523, 5091, 7264, 10284, 14405, 20035, 27621, 37831, 51425, 69497, 93299, 124588, 165408, 218533, 287231, 375851, 489525, 634980, 820195, 1055444, 1352965, 1728326, 2200060, 2791516, 3530513
Offset: 0
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (first 1000 terms from Alois P. Heinz)
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*`if`(d<7, 2, 1), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 14 2014
-
Mathematica
nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 6}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *) Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@6], {n,0,39}] (* Robert Price, Jul 29 2020 *) T[n_, 0] := PartitionsP[n]; T[n_, m_] /; (n >= m(m+1)/2) := T[n, m] = T[n-m, m-1] + T[n-m, m]; T[, ] = 0; a[n_] := T[n+21, 6]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
Formula
G.f.: (product(1/(1-x^k), k=1..6)^2)*product(1/(1-x^j), j=7..infty).
a(n) = sum(A103924(n-6*j), j=0..floor(n/6)), n>=0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^3 * n^2 / (4*sqrt(3) * 6! * Pi^6) = exp(Pi*sqrt(2*n/3)) * sqrt(3) * n^2 / (40*Pi^6). - Vaclav Kotesovec, Aug 28 2015
Comments