A103932 Numerators of first difference of squares of harmonic numbers.
1, 5, 10, 47, 131, 71, 353, 1487, 6989, 1451, 82451, 42433, 1132133, 1158863, 236749, 4828073, 41781863, 42482563, 273253759, 277235737, 56204647, 18975625, 441730115, 670193263, 33874048171, 34224132367, 311048966203, 313970420453
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..2296
- Wolfdieter Lang, Rationals.
Programs
-
Maple
H:= Vector(51): for i from 2 to 51 do H[i]:= H[i-1]+1/(i-1) od: HS:= map(t -> t^2, H): convert(map(numer, HS[2..-1]-HS[1..-2]),list); # Robert Israel, Sep 27 2023
-
Mathematica
Array[ HarmonicNumber[#]^2&, 29, 0] // Differences // Numerator (* Jean-François Alcover, Jul 09 2013 *)
Formula
a(n) = numerator(r(n)), with the rationals r(n) = H(n)^2 - H(n-1)^2 where H(n) = A001008(n)/A002805(n), n >= 1, H(0):=0.
G.f. for r(n): (log(1-x))^2 + dilog(1-x) where dilog(1-x) = polylog(2, x).
a(n) = numerator(h(n) + h(n-1)), where h(n) is the n-th harmonic number. - Gary Detlefs, May 25 2012
Comments