cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103943 Number of unrooted two-vertex n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 3, 12, 48, 196, 798, 3248, 13184, 53416, 216018, 872344, 3518496, 14177528, 57080572, 229657792, 923474944, 3711572176, 14911097514, 59883185096, 240416320928, 964947251544, 3872021946532, 15533828715232, 62306843932928
Offset: 1

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    f[n_] := (2^(2n - 1) - Binomial[2n - 1, n - 1] + Binomial[n - 1, Floor[n/2]])/2; Table[ f[n], {n, 24}] (* Robert G. Wilson v, Mar 24 2005 *)
    Rest[CoefficientList[Series[1/8(-2+2/(1-4x)-1/Sqrt[1-4x]+1/Sqrt[1+4x]+2/Sqrt[-1+2/(1+2x)]-Sqrt[1+Sqrt[1-16x^2]]/Sqrt[1/2-8x^2]), {x, 0, 20}], x]] (* Benedict W. J. Irwin, Aug 13 2016 *)

Formula

2a(n) = 2^(2n-1) - binomial(2n-1, n-1) + binomial(n-1, floor(n/2)).
G.f.: 1/8*(2/q^2 -2 + 1/p - 1/q + 2*sqrt(p^2-2*x)/sqrt(q^2+2*x) - sqrt(2 + 2*p*q)/(p*q)), where p=sqrt(1+4*x) and q=sqrt(1-4*x). - Benedict W. J. Irwin, Aug 13 2016

Extensions

More terms from Robert G. Wilson v, Mar 24 2005