A103969 Positions n such that A005941(n) = A005940(n).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72, 80, 96, 112, 128, 144, 160, 192, 224, 256, 288, 320, 384, 448, 512, 576, 640, 768, 896, 1024, 1152, 1280, 1536, 1792, 2048, 2304, 2560, 3072, 3584, 4096, 4608, 5120, 6144, 7168
Offset: 1
Keywords
Examples
56 is in the sequence since A005940(56) = A005941(56) = 72. 7 is in the sequence since A005940(7) = 9, and A005940(9) = 7, thus also A005941(7) = 9, and A005941(9) = 7. - _Antti Karttunen_, Aug 01 2023
Links
- R. J. Mathar, Table of n, a(n) for n = 1..60.
Programs
-
Mathematica
f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; t = Table[ f[n], {n, 10^4}]; u = Flatten[ Table[ Position[t, n, 1, 1], {n, 10^4}]]; Do[ If[ u[[n]] == {}, u[[n]] = {0}], {n, 10^4}]; Flatten[ Position[ Take[t, 10^4] - Flatten[u], 0]]
-
Python
from math import prod from itertools import accumulate, count, islice from sympy import prime, primepi, factorint from collections import Counter def A103969_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:sum((1<
A103969_list = list(islice(A103969_gen(),20)) # Chai Wah Wu, Mar 11 2023
Formula
Empirical g.f.: x*(1 +x +x^2 +x^3 +x^4)^2 / (1-2*x^5). - Colin Barker, Nov 18 2016
Extensions
Definition corrected and example updated by R. J. Mathar, Mar 06 2010
Comments